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As seen from our position: As seen from another position:

Now

Slightly Earli
ightly Earlier Recessional velocity « distance

Same pattern seen by all observers!
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H. Minkowski German

! “Henceforth space by itself, and time by

MinkOW Ski Metric S i itself, are doomed to fade away into

mere shadows, and only a kind of union
2 2 2 2
dt” =-ds” =dt” — dx

of the two will preserve an independent
reality" (1907)

dv* = -ds* = di* -[a(t)] dy’

H.P. Robertson A.G. Walker

. . American British
a(t) dimensionless; set a(now) =1
X has units of len gth Formal.lzed most general form of
1sotropic and homogeneous
a(t)Ayx = physical separation at ¢ universe in GR "Robertson-

Walker metric” (1935-6)



Acceleration, return cosmological
Matter-dominated,  constant and/or vacuum energy.
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a(t) A structure forms

-
/ Radiation-dominated thermal equilibrium

j Inflation, dominated by “inflaton field” vacuum energy
't

The New Standard Cosmology in Four Easy Steps
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Dark Energy
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Pattern Dark Ages Development of
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Basic

dE =TdS — PdV
Thermodynamics

Sudden expansion, fluid fills empty
space without loss of energy.

dEE=0 PdV >0 therefore dS >0

Gradual expansion (equilibrium maintained),
fluid loses energy through PdV work.

Cool dE = -PdV therefore dS =0

Isentropic
Adiabatic



Expansion covers many decades in T, so typically
either T>>m (relativistic) or T<<m (frozen out)

Entropy S in co - moving volume (Ax)3 preserved

. S 2n*\ ., (27° 5
Relativistic gas V =§= Espamcle Type = E (4—5) r =( ) 8.s T

Particle Type Particle Type

g.s = effective number of relativistic species
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Start with light particles, no strong nuclear force
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Now add hadrons = feel strong nuclear force
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How many hadrons?

1000 |
500 |

Density of hadron mass

states dN/dM increases 12‘; :

exponentially with mass.

dN

T, ~ 2x1012 °K =170 MeV

10

d—j\4~M“exp(%) >

non-strange mesons

0.5 1 1.5 2 2.5 3
m [GeV]
Broniowski, et.al. 2004

Prior to the 1970’s this was explained in several ways theoretically

Statistical Bootstrap Hadrons made of hadrons made of hadrons...

Regge Trajectories Stretchy rotators, first string theory



Ordinary statistical mechanics:

E~ Y E, gexp(- fE—exp (-E/T)dE

states i

For thermal hadron gas (crudely set E=M,):

E ~ oon—NeXp(—M/T)dM now add in 2~ M“exp(+M/T,)
O dM dM

NfooMﬁexp -M L 1
0 T T,

)dM

Energy divergesas T --> T

Ultimate Temperature in the Early Rolf Hagedorn
Universe K.Huang & S. Weinberg German
Hadron bootstrap

(Phys Rev Lett 25, 1970)

model and limiting
temperature (1965)

“...a veil, obscuring our view of the very
beginning.” Steven Weinberg, The First Three
Minutes (1977)



QCD to the rescue!

D. Gross
H.D. Politzer

F. Wilczek
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“Before [QCD] we could not go back further than 200,000 years after the
Big Bang. Today...since QCD simplifies at high energy, we can extrapolate
to very early times when nucleons melted...to form a quark-gluon plasma.”

David Gross, Nobel Lecture (RMP 05)
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Kolb & Turner, “The Early Universe”



National Research Council
Kgacing Report (2003)
Quar

with the | Eleven Science Questions for
A s the New Century

Question 8 is:

What Are the New States of Matter at Exceedingly
High Density and Temperature?

The theory of how protons and neutrons form the atomic nuclei of the
chemical elements is well developed. At higher densities, neutrons and
protons may dissolve into an undifferentiated soup of quarks and gluons,
which can be probed in heavy-ion accelerators. Densities beyond nuclear
densities occur and can be probed in neutron stars, and still higher densities
and temperatures existed in the early universe.




BNL-RHIC

Facility

Also: BNL-AGS, CERN-SPS, CERN-LHC



Temperature



Thermal photon radiation
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Pressure
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Pressure effects increase with energy density
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Not an ideal gas



s Entropy density
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The QGP dominates the energy density of the
early Universe for 7> 200 MeV

20r T T T T 5L s ) B S T

Total  The QCD sector keeps
- the early universe away
from global equilibrium:
* Low heat conduction

5: ~« Low diffusion
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Baryogenesis!
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The P/e of the universe dips away from radiation-

dominance 1/3 at the QGP/Hadron transition

Conformal scalar fields coupled to
T“M=8-3P; quintessence (h/t Keith Olive)

Brax, et.al., Detecting dark enerqgy in orbit: The
cosmological chameleon, Phys Rev D70 (2004)

Gravity waves

Maggiore, Gravitational Wave Experiments and
Early Universe Cosmology, Phys Rep 331 (2000)

QGP horizon now expanded:

a(now) _

a(OGP)

Size today = Horizon at QGP cl0

-+ 1(QGP)
T(now)
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To take home:

* The early universe is straightforward to
describe, given simplifying assumptions of
isotropy, homogeneity, and thermal equilibrium.

* Strong interaction/hadron physics made it hard
to understand T > 100 MeV ~ 10'2 K. ldeal-gas
thermal QCD makes high temperatures tractable
theoretically.

* We are now delivering on a 30-year-old
promise to test this experimentally. Some
results confirm standard picture, but non-ideal-
gas nature of QCD may have new consequences.



